Binding of F-spondin to amyloid- precursor protein: A candidate amyloid- precursor protein ligand that modulates amyloid- precursor protein cleavage
نویسندگان
چکیده
Amyloidprecursor protein (APP), a type I membrane protein, is physiologically processed by or -secretases that cleave APP N-terminal to the transmembrane region. Extracellular -cleavage of APP generates a large secreted N-terminal fragment, and a smaller cellular C-terminal fragment. Subsequent -secretase cleavage in the transmembrane region of the C-terminal fragment induces secretion of small extracellular peptides, including A 40 and A 42, which are instrumental in the pathogenesis of Alzheimer’s disease, and intracellular release of a cytoplasmic tail fragment. Although APP resembles a cell-surface receptor, no functionally active extracellular ligand for APP that might regulate its proteolytic processing has been described. We now show that F-spondin, a secreted signaling molecule implicated in neuronal development and repair, binds to the conserved central extracellular domain of APP and inhibits -secretase cleavage of APP. Our data indicate that F-spondin may be an endogenous regulator of APP cleavage, and suggest that the extracellular domains of APP are potential drug targets for interfering with -secretase cleavage.
منابع مشابه
Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation
Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...
متن کاملMinocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation
Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...
متن کاملEffect of rosiglitazone on amyloid precursor protein processing and Aβ clearance in streptozotocin-induced rat model of Alzheimer’s disease
Objective(s): Increasing evidence suggests that Alzheimer’s disease (AD) is associated with diabetes. Rosiglitazone, a peroxisome proliferator-activated receptor γ (PPAR-γ) agonist and anti-diabetic agent, may improve symptoms of AD. However, the underlying therapeutic potential of it has not been fully elucidated. Materials and Methods: Rats were divided into four groups: control group, sham o...
متن کاملInvestigation of the Iron Oxide Nanoparticle Effects on Amyloid Precursor Protein Processing in Hippocampal Cells
Introduction: Iron oxide nanoparticles (Fe2O3-NPs) are small magnetic particles that widely used in different aspects of biology and medicine in modern life. Fe2O3-NP accumulated in the living cells due to absence of active system to excrete the iron ions so damages cellular organelles by highly reactivity. Method: Herein cytotoxic effects of Fe2O3-NP with 50 nm size were investigated on prima...
متن کاملP 102: The Study of Some Factors Which Effect on Beta-Amyloid Signaling in Neuroinflammation
Neurological inflammatory diseases are developing rapidly. Different factors involved in the pathogenesis of these diseases. In this article, we discuss some of the mechanisms are dealt with. An aberrant procedure of beta-amyloid precursor protein (BAPP) to form neurotoxic beta-amyloid peptides and an accumulated insoluble polymer of beta –amyloid (BA) that forms the senile plaque. The ab...
متن کامل